The syllabus of the discipline

Global information infrastructure

S.A. Krivenko, Associate Professor of INE, Ph.D., Associate Professor E-mail: stanislav.kryvenko@nure.ua

Field name	Detailed content, comments	
Name of the faculty	Faculty of Infocommunications	
Level of higher education	Second (master's)	
Code and name of the	172 Telecommunications and radio engineering	
specialty		
Type and name of	EPP "Information and Network Engineering"	
educational program		
Name of the discipline	Global information infrastructure	
Number of ECTS credits	4	
Discipline structure	30 hours - 15 lectures,	
(distribution by types and	4 hours - 2 practical lesson,	
hours of study)	16 hours - 4 laboratory classes,	
	12 hours - 6 consultations,	
	88 hours - independent work,	
	type of control: credit	
Schedule (terms) of	1-st year, I semester	
studying the discipline		
Prerequisites for studying	Basic concepts of:	
the discipline	discipline "Python programming language"	
Competences, knowledge,	The discipline is used to form the following competencies: to analyze	
skills, understanding, which	the principles of building a global information infrastructure for	
is acquired by the applicant	communications; navigate the algorithms, programs and schemes of the	
in higher education in the	global information infrastructure of communication; enter the text of	
learning process	programs of separate modules and perform modeling; formulate and	
	solve the main tasks of operation and reprogramming of the global	
The quality of the	Educational methodical and metorial technical recourse provision of the	
advestional process	educational methodical and material-technical resource provision of the	
educational process	studied meets the licensing requirements and accreditation conditions of	
	the educational activity of the university Annual monitoring and	
	revision of the curriculum of the discipline in accordance with the	
	requirements and recommendations of the Ministry of Education and	
	Science state certification of acquired competencies of graduates	
	standards of cooperation with employers to ensure a competitive level of	
	training. Adherence to the principles of academic integrity	
	(https://lib.nure.ua/plagiat). Contains public information on the	
	requirements, competencies, level of education within the current	
	educational program.	

Description and content of the discipline

According to the qualification requirements for higher education in specialty 172 "Telecommunications and Radio Engineering" the purpose of the discipline is to form a system of concepts, a set of knowledge and skills on technologies for building and operating Global and National Information Infrastructure, solving major problems of information infrastructure: technical, economic, organizational.

Content

Content module 1. Functional construction and interfaces.

Topic 1. General characteristics.

Topic 2. Basic technologies.

Topic 3. Functional diagram.

Topic 4. Functional model.

Topic 5. Linear prediction model

Content module 2. Characteristics of GII.

Topic 6. Infrastructure of 3GPP standards

Topic 7. Verilog model.

Topic 8. Characteristics of technology

Topic 9. Fundamental types of channels

Topic 10. Database infrastructure.

Content module 3. Protocols.

Topic 11. Design model.

Topic 12. Point-to-point protocol (PPP).

Topic 13. Channel switching protocols.

Topic 14. Packet switching protocols.

Topic 15. Directions of development (Microsoft Azure, WEB, CLOUD).

Learning outcomes of higher education

As a result of studying the discipline, students must:

know: general trends and problems of global information infrastructure development; principles and systems of building a modern global information infrastructure; description languages, basics of organization and composition of global information infrastructure software.

be able to: analyze the principles of building a global information infrastructure of communication; navigate the algorithms, programs and schemes of the global information infrastructure of communication; enter the text of programs of separate

modules and perform modeling; formulate and solve the main tasks of operation and reprogramming of the global communication information infrastructure.

Assessment system according to each task for passing the test / exam.

To evaluate the student's work during the semester, the final rating is calculated as the sum of grades for different types of classes and for control activities. Each laboratory work is evaluated in 10 points (4 points for attendance, 2 points for performance, 2 points for report, 2 points for defense). Each test task has 10 points. The credit rating is defined as the ratio of the obtained points to the highest value, which is given in the table. The maximum rating during the semester - 100 points, is defined as the average for three credits.

Type of lesson / control measure	MAX rating	rating
Lectures 1,2,3,4,5	10	20
Practical classes 1.2	20	40
Test tasks for topic 1	20	40
Checkpoint 1	50	100
Lectures 6,7,8,9,10	10	20
Laboratory work 2.3	20	40
Test tasks for topic 2	20	40
Checkpoint 2	50	100
Lectures 11,12,13,14,15	10	20
Laboratory work 3.4	20	40
Test tasks for topic 3	20	40
Checkpoint 3	50	100
Rating	150	300

Qualitative evaluation criteria in the national scale and ECTS

Satisfactory, D, E (60-74). Show the required minimum of theoretical knowledge. Know the ways and methods of solving practical problems and be able to use them in practice.

Good, C (75-89). Firmly know a minimum of theoretical knowledge. Demonstrate the ability to solve a practical problem and justify all stages of the proposed solution.

Excellent, A, B (90-100). Show complete knowledge of basic and additional theoretical material. Unmistakably solve a practical problem, explain and justify the chosen method of solution.

Assessment scale: national and ECTS

Г	ET 6	Fama				
	The sum of	ECTS	Score on a national scale			
	points for	assessment	for exam, course project	for offset		
	all types of		(work), practice			
	educational		(······), F-······			
	octivition					
	activities					
L						
	90 - 100	Α	perfectly			
	82-89	В	fine	credited		
	74-81	С				
Γ	64-73	D	satisfactorily			
Γ	60-63	Ε	, and a set of y			
Ī	35-59	FX	unsatisfactory with the possibility	not credited with the possibility		
			of reassembly	of re-assembly		
Γ			unsatisfactory with mandatory	not credited with compulsory		
	0-34	F	re-evamination	re-study of the discipline		
	0.51	*	10-0xammation	te study of the discipline		

Methodical support

Basic literature

1. Bezruk, V.M. Informatsiini merezhi zviazku. Ch.3. Merezhi mobilnoho zviazku[Tekst]: navch. posibnyk./ V.M. Bezruk, V.V. Yemelianov, S.A. Kryvenko – Kharkiv: KhNURE, 2011. – 420s.

Supporting literature

2. Skliar, B. Tsyfrovaia sviaz. Teoretycheskye osnovы y praktycheskoe prymenenye. Yzd.2-e, yspr.: Per s anhl. – M.: Yzdatelskyi dom «Vyliams», 2007. – 1104s.

Methodical instructions and literature for different types of classes

3. Metodychni vkazivky do samostiinoi roboty ta praktychnykh zaniat z dystsypliny «Hlobalna informatsiina infrastruktura» dlia studentiv dlia studentiv usikh form navchannia spetsialnosti 172 «Telekomunikatsii ta radiotekhnika» [Elektronnyi resurs] / KhNURE ; uporiad. S. A. Kryvenko. – Kharkiv, 2016. – 16 s.

4. Konspekt lektsii z dystsypliny "Hlobalna informatsiina infrastruktura" dlia studentiv usikh form navchannia spetsialnosti 7.05090301 "Informatsiini merezhi zviazku" [Elektronnyi resurs] / KhNURE ; uporiad. S. A. Kryvenko. – Kh., 2014. – 45 s.

5. Metodychni vkazivky do laboratornykh robit z dystsypliny "Hlobalna informatsiina infrastruktura" dlia studentiv usikh form navchannia spetsialnosti 7.05090301 "Informatsiini merezhi zviazku" [Elektronnyi resurs] / KhNURE; uporiad. S. A. Kryvenko. – Kh., 2014. – 44 s.

Information support

1. MS Visual Studio 2019 computer-aided design package, EDSW and FAR programs.

Dopomizhna literatura

2. Skliar, B. Tsyfrovaia sviaz. Teoretycheskye osnovы y praktycheskoe prymenenye. Yzd.2-e, yspr.: Per s anhl. – M.: Yzdatelskyi dom «Vyliams», 2007. – 1104s.: yl. – Paral. Tyt. Anhl..

Metodychni vkazivky z samostiinoi roboty