The syllabus of the discipline Mathematical models of communication networks

PE Pustovoitov, Professor of IMI, Ph.D., Professor E-mail <u>pavlo.pustovoitov@nure.ua</u>

Field name	Детальний контент, коментарі		
Name of the faculty	Faculty of Infocommunications		
Level of higher education	Second (master's)		
Code and name of the	172 Telecommunications and radio engineering		
specialty			
Type and name of	ESP "Information and Network Engineering"		
educational program			
Name of the discipline	Mathematical models of communication networks		
Number of ECTS credits	5		
Discipline structure	20 hours - 13 lectures,		
(distribution by types and	8 hours - 4 practical classes,		
hours of study)	16 hours - 4 laboratory classes,		
	10 hours - 5 consultations,		
	hours - homework,		
	type of control: exam		
Schedule (terms) of	1st year, first semester		
studying the discipline			
Prerequisites for studying	Basic concepts of academic disciplines: Higher Mathematics;		
the discipline	Telecommunication theory; Telecommunication and information		
	networks		
Competences, knowledge,	The discipline is used to form the following competencies: - be able to		
skills, understanding, which	encode images and video data; choose compression algorithm and		
is acquired by the applicant	encoding method according to image type in		
in higher education in the	multimedia stream.		
learning process			
The quality of the	Educational-methodical and material-technical resource provision of the		
educational process	educational program, within the framework of which the discipline is		
	studied, meets the licensing requirements and accreditation conditions of		
	the educational activity of the university. Annual monitoring and revision		
	of the curriculum of the discipline in accordance with the requirements		
	and recommendations of the Ministry of Education and Science, state		
	certification of acquired competencies of graduates, standards of		
	cooperation with employers to ensure a competitive level of training.		
	Adherence to the principles of academic integrity		
	(<u>intps://no.nure.ua/piagiat</u>). Contains public information on the		
	advestional program		
	euucauonai program.		

Description and content of the discipline

According to the qualification requirements for higher education in specialty 172 "Telecommunications and Radio Engineering" the purpose of the discipline is to provide students with knowledge, skills and abilities in the field of analysis, modeling and design of telecommunications and information networks.

The course also covers: analysis of the reliability and survivability of networks; bipolar network models and characteristics of information delivery in them; queue network models and characteristics of information delivery in them; main tasks of packet-switched network design

Content

Content module 1.

Topic 1. General provisions of the theory of queuing systems.

Topic 2. Interface models of nodes of networks with homogeneous traffic.

Content module 2.

Topic 3. Models of interfaces of nodes of networks with inhomogeneous traffic.

Topic 4. Models of multichannel nodes of networks with inhomogeneous traffic with absolute priority.

Content module 3.

Topic 5. Models of network nodes with relative priority.

Topic 6. Models of management of disciplines of queues.

Learning outcomes of higher education

As a result of studying the discipline, students must:

KNOW: classification of models of telecommunication and information networks, general indicators of service quality, structures and structural properties of models of networks for various purposes, methods of traffic service, principles of modeling and design of telecommunication and information networks.

BE ABLE: to develop mathematical, analytical and simulation models and technological algorithms of telecommunication and information networks, to carry out technical substantiation of networks by studying the model, to use theoretical positions in their design.

Assessment system according to each task for passing the test / exam

To evaluate the student's work during the semester, the final rating Qsem calculated as the sum of grades for different types of classes and control measures. Each practical lesson is evaluated in 5 points (2 points for attendance and 3 points for active participation in the lesson). Each laboratory work is evaluated in 10 points (2 points for attendance, 3 points for admission and testing, maximum 5 points for timely protection in the current laboratory work). Auditory test (ACR) - a maximum of 5 points, homework (SCR) a maximum of 10 points. The maximum rating during the semester is $100 \ge 0.6 = 60$ points. Admission to the combined exam sets a minimum of $60 \ge 0.6 = 36$ points. The maximum rating for the oral exam of the combined exam is $100 \ge 0.4 = 40$ points.

Type of lesson / control measure	Rating
Lb №1	10
Lb №2	15
DKR № 1	15
Control Point № 1	40
Lb №3	10
DKR № 2	20
Control Point № 2	30
Lb №4	10
DKR № 3	20
Control Point № 3	30
Total for the semester	100

Qualitative evaluation criteria in the national scale and ECTS

Satisfactory, D, E (60-74).). Show the required minimum of theoretical knowledge. Know the ways and methods of solving practical problems and be able to use them in practice.

Good, C (75-89).). Firmly know a minimum of theoretical knowledge. Demonstrate the ability to solve a practical problem and justify all stages of the proposed solution.

Excellent, A, B (90-100). Show complete knowledge of basic and additional theoretical material. Unmistakably solve a practical problem, explain and justify the chosen method of solution

The sum ofpoints	ECTS	Score on a national scale	
for all types of educational activities	assessment	for exam, course project(work), practice	for offset
90 - 100	Α	perfectly	
82-89	В	fine	credited
74-81	С		
64-73	D	satisfactorily	
60-63	Ε		
35-59	FX	unsatisfactory with the possibility of reassembly	not credited with the possibility of re-assembly
0-34	F	unsatisfactory with mandatoryre-examination	not credited with compulsory re-study of the discipline

Assessment scale: national and ECTS

Methodical support

Basic literature

1. Lozhkovsky AG Theory of queuing in telecommunications: a textbook / A.G. Lozhkovsky. - Odessa: ONAS them. AS Popova, 2012. - 112 p.

2. Kleinok L. Theory of queuing: trans. with English / L. Kleinok; under ed. YOU. Neumann.
- M.: Mashinostroenie, 1979. - 330p.

3. Taha Hamdi A. Introduction to Operations Research, 7th ed.: Per. with English - M .: Williams Publishing House, 2005. - 912 e .: ill. - Paral. tit. English

Additional literature

1. Theory of communication networks / Ed. VN Roginsky. - M: Radio and communication, 1981.

2. Kleinrock L. Computing systems with queues. - M. Mir, 1979.

3. Curly EA Traffic management and quality of service on the Internet. - SPb .: Nauka i tehnika, 2004.

4. Lozhkovsky AG Calculation of single-channel systems with infinite queue at exponential service duration // Scientific works of ONAZ. O.S. Popova. - 2009. - № 2. - P. 10-13.

Lozhkovsky AG Comparative analysis of methods for calculating the characteristics of service quality in self-similar flows in the network // Modeling and information technology.
 Coll. Science. IPME Ave. GE Pukhov National Academy of Sciences of Ukraine.
 Vip. 47. - K .: 2008. - P. 187-193.

6. Pustovoitov PE Analysis of multichannel computer networks with inhomogeneous priority input stream [Text] / L.G. Raskin, P.E. Pustovoitov, Sa'di Ahmad Abdelhamid Saed Ahmad // Information and control systems in railway transport. - Kharkiv: HarDAZT, 2005. - 21,2.- P.45-49.

7. Pustovoitov PE Estimation of efficiency of multi-input computer networks by methods of phase aggregation of states [Text] / P.E. Pustovoitov, Sa'di Ahmad Abdelhamid Saed Ahmad // Bulletin of the National Technical University "KhPI". - Kharkiv: NTU "KhPI", 2005. - No19. - P.101-104.

8. Pustovoitov PE Optimization of parameters of phase decomposition of high-dimensional Markov systems [Text] / O.B. Gray, P.E. Pustovoitov, Sa'di Ahmad Abdelhamid Saeed Ahmad // Open Information and Computer Integrated Technologies. - Kharkiv: NACU "KHAI", 2005. - №27. - P. 175-178.

9. Pustovoitov PE Application of the theory of Markov processes in the study of the efficiency of computer networks [Text] / P.E. Pustovoitov, Sa'di Ahmad Abdelhamid Saeed Ahmad // Mathematical Modeling. - Dniprodzerzhynsk: DSTU, 2005. - ,21,2. P.100-102.

10. Pustovoitov PE Estimation of efficiency of semi-Markov computer networks of high dimension [Text] / L.G. Raskin, P.E. Pustovoitov, Sa'di Ahmad Abdelhamid Saeed Ahmad, El Saeed Abdelaal Elsaed Mohammed // Bulletin of the National Technical University "KhPI". - Kharkiv: NTU "KhPI", 2005. - № 56. - P.17-21.

11. Pustovoitov PE Managed Markov chain - a model of a corporate computer network [Text] / P.E. Pustovoitov, Sa'di Ahmad Abdelhamid Saeed Ahmad, El Saeed Abdelaal Elsaed Mohammed // Bulletin of the National Technical University "KhPI". - Kharkiv: NTU "KhPI", 2005. - № 55. - P.167-171.

12. Pustovoitov PE Estimation of efficiency of a computer network with a stream of group applications and unlimited turn [Text] / L.G. Raskin, P.E. Pustovoitov, El Saeed Abdelaal Elsaed Mohammed // Bulletin of the National Technical University "KhPI". - Kharkiv: NTU "KhPI", 2005. - № 59.– P.26-31.

13. Pustovoitov PE Markov approximation of non-Markov systems [Text]

/ L.G. Raskin, P.E. Pustovoitov, Sa'di Ahmad Abdelhamid Saed Ahmad // Information and control systems in railway transport. - Kharkiv: ICST, 2006. - №1. - P.57-60.

14. Pustovoitov PE Estimation of efficiency of queuing system with Poisson incoming flow and non-Markov service [Text] / P.E. Pustovoitov // Bulletin of the National Technical University "KhPI". - Kharkiv: NTU "KhPI", 2006. - «19. - P.93-98.

Methodical instructions for different types of classes

 Pustovoitov PE Mathematical models of communication networks: nav. manual / P.Ye. Pustovoitov. - Kharkiv: KhNURE, 2019. - 104p. Approved Academic Council of KNURE March 29, 2019, Prot. №4 / 10. http://repository.kpi.kharkov.ua/handle/KhPI-Press/44522
 Pustovoitov PE Modern software tools for optimization and modeling of infocommunication networks: nav. manual / P.Ye. Pustovoitov. - Kharkiv: KhNURE, 2019. -116p. Approved Academic Council of KNURE March 29, 2019, Prot. №4 / 10. http://repository.kpi.kharkov.ua/handle/KhPI-Press/44524

Information support

1. http://repository.kpi.kharkov.ua/handle/KhPI-Press/44522

2. http://repository.kpi.kharkov.ua/handle/KhPI-Press/44524