The syllabus of the discipline CASE-technologies of information systems design

V.A. Zolotaryov, Associate Professor of INE dept, Ph.D., Associate Professor E-mail: vadym.zolotarov@nure.ua

Field name	Detailed content, comments
Name of the faculty	Faculty of Infocommunications
Level of higher education	First (bachelor's)
Code and name of the	172 Telecommunications and radio engineering
specialty	
Type and name of	EPP "Information and Network Engineering"
educational program	
Name of the discipline	CASE-technologies of information systems design
Number of ECTS credits	4
Discipline structure	24 hours - 12 lectures,
(distribution by types	4 hours - 2 practical classes,
andhours of study)	20 hours - 5 laboratory classes,
	8 hours - 4 consultations,
	64 hours - homework,
	type of control: credit
Schedule (terms) of	4th year, VII semester
studying the discipline	
Prerequisites for	Basic knowledge of disciplines that provide knowledge of routing
studyingthe discipline	in communication networks, protocols, types and design of network construction.
Competences,	The discipline is used to form the following competencies: in the process
knowledge, skills,	of practical activities in the field of infocommunications skills design
understanding, which is	of infocommunication systems and software of infocommunication systems.
acquired by the	
applicant in higher	
education in the	
learning process	
The quality of the	Educational-methodical and material-technical resource provision of the educational
educational process	program, within the framework of which the discipline is studied, meets the
-	licensing requirements and accreditation conditions of the educational activity of the
	university. Annual monitoring and revision of the curriculum of the discipline in
	accordance with the requirements and recommendations of the Ministry of
	Education and Science, state certification of acquired competencies of graduates,
	standards of cooperation with employers to ensure a competitive level of training
	Adherence to the principles of academic integrity (<u>https://lib.nure.ua/plagiat</u>).
	Contains public information on the requirements, competencies, level of education
	within the current educational program

Description and content of the discipline

The purpose of studying the discipline is to acquire knowledge and practical skills of students according to the standards IDEFO, IDEF3, DFD, which will be used by them in performing tasks of designing information systems and their software.

Content

Content module 1.

Topic 1. Modern approaches to software development.

Topic 2. Software life cycle models

Topic 3. Management of software development requirements

Topic 4. Life cycle and formalized description of task flows

Topic 5. Formalized description and implementation of task flows

Topic 6. BPMN: graphic elements; use of BPMN; example of the description of BP.

Content module 2.

Topic 1. UML language. Usage diagrams

Topic 2. Class and state diagrams

Topic 3. Activity and sequence diagrams

Topic 4. Deployment and synchronization diagrams

Topic 5. Implementation and flow technologies

Topic 6. Technologies for organizing workflows in distributed systems.

Learning outcomes of higher education

As a result of studying the discipline, students must:

- know: modern approaches to software development; software life cycle models; management of software development requirements; life cycle and formalized description of task flows; formalized description and implementation of task streams; BPMN: graphic elements; use of BPMN; an example of a description of the BP; UML language; usage diagrams; diagrams and states; activity and sequence diagrams; deployment and synchronization diagrams; sales and flow technologies; technologies for organizing workflows in distributed systems

- be able to: use IDEFO diagrams to describe business processes; create reports with built-in RAMUS tools; build TO-BE diagrams ("how to be"); use functional-cost analysis to assess the effectiveness of business processes; use diagrams describing the logic of the interaction of works to describe the subject area using the IDEF3 standard; create Node Tree and Swim Lane organization charts; use data flow charts to describe the subject area.

Assessment system according to each task for passing the test / exam

To assess the work of a student during the semester, the final rating score Q_{sem} is calculated as the sum of marks for different types of classes and control activities

Type of lesson / control measure	Rating
Lb № 1, 2	$(610) \ge 2 = 1220$
Control testing 1	(1220) = 1220
Checkpoint 1	2440
Lb № 3,4,5	$(610) \ge 3 = 1830$
Practice Control testing	(1220) = 1220
Control testing 2	(610) = 610
Checkpoint 2	3660
Total for the semester	60100

Qualitative evaluation criteria in the national scale and ECTS

Satisfactory, D, E (60-74). Show the required minimum of theoretical knowledge. Know the ways and methods of solving practical problems and be able to use them in practice.

Well, C (75-89). Firmly know a minimum of theoretical knowledge. Demonstrate the ability to solve a practical problem and justify all stages of the proposed solution.

Excellent, A, B (90-100). Show complete knowledge of basic and additional theoretical material. Unmistakably solve a practical problem, explain and justify the chosen method of solution.

The sum of	ECTS	Score on a national scale		
points for all types of educational activities	assessment	for exam, course project (work), practice	for offset	
90 - 100	Α	perfectly		
82-89	В	fine	credited	
74-81	С			
64-73	D	satisfactorily		
60-63	Ε			
35-59	FX	unsatisfactory with the possibility	not credited with the possibility	
		of reassembly	of re-assembly	
0-34	F	unsatisfactory with mandatory re-examination	not credited with compulsory re-study of the discipline	

Assessment scale: national and ECTS

Methodical support

Basic literature

1. Tekhnolohii nadannia informatsiinykh posluh: navch. Posibnyk / Bezruk V.M., Korolov V.M., Zolotarov V.A., Botsman P.D., Kostromytskyi A.I., Astrakhantsev A.A.,Kapusta S.O. - Kharkiv:KhNURE,2011.

2. Rozrobka informatsiinykh resursiv i system: Elektronne navchalne vydannia. Konspekt lektsii/ L.S. Hloba; T.M.Kot. – K.: NN ITS NTUU «KPI», 2014 – 320 s.

Methodical instructions for different types of classes

1.Laboratornyi praktykum z kursu «CASE-tekhnolohii». – Kharkiv, KhNEU, 2015.

Information support Original software